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THEORETICAL AND SUBJECTIvE BIT ASSIGNVENTS IN 

TRANSFORM PICTIJRE PROCESSING 

Harry W. Jones, Jr." 

Ames Research Center 

SUMMARY 

It is shown that all combinations of symmetrical input distributions with 
difference distortion measures give a bit assignment rule identical to the 
well-known rule for a Gaussian input distribution with mean-square error. 
lished work is examined to show that the bit assignment rule is useful for 
transforms of full pictures, but subjective bit assignments for transform pic- 
ture coding using small block sizes are significantlv different from the 
theoretical bit assignment rule. An intuitive explanation is based on subjec- 
tive design experience, and a subjectively obtained bit assignment rule is 
given. 

Pub- 

INTRODlrCTIDN 

In transform picture coding, a picture or smaller subpictures are 
linearly transformed and the resulting transform coefficients are quantized 
and transmitted. If the picture elements are highly correlated, most of the 
transform domain energy is concentrated in a few transform vectors that revre- 
sent averages of adjacent picture elements. 
used to specify these high-energy vector coefficients, and the resulting trans- 
mission rate for a given distortion is closer to the theoretical bound than the 
original untransformed picture data rate. 
eigenvalue transformation is best, the computationally simpler Fourier, cosine, 
o r  Hadamard transforms have been found useful (refs. 1 to 3 ) .  

The transmitted information is 

Although the Karhunen-Loeve or 

The bit assignment and quantizers that give minimum mean-square error for 
a set of independent Gaussian random variables are well known [ref's. 4 and 5).  
The assumptions of Gaussian distribution and mean-square-error criterion are 
not always correct for the transform Coefficients of images, and new quantizers 
have been found for more appropriate distributions and more general error cri- 
teria (refs. 6 and 71. It will be shown that all combinations of symmetrical 
input distribution with difference distortion measures give a bit assignment 
algorithm identical to the well-known algorithm for a Gaussian input distribu- 
tion and mean-square-error criterion. 
although the bit assignment algorithm is useful for transforms of full pic-. 
tures, subjectively designed bit assignments for pictures transformed using 
small subpicture blocks differ significantly from the theoretical algorithm. 
Finally, an intuitive explanation of this discrepancy is given, based on a 

*National Research Council Postdoctoral Research Associate. 

Published work is examined to show that, 
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s u b j e c t i v e  design of a Hadamard t ransform video compressor ( r e f .  8), and a 
s u b j e c t i v e l y  obtained b i t  assignment r u l e  w i l l  be s t a t e d .  

THEORETICAL BIT ASSIGNMENTS 

Huang and Schu l the i s s  ( r e f .  5) determined t h e  optimum b i t  assignment us ing  
t h e  ra te  d i s t o r t i o n  func t ion  f o r  Gaussian input  and mean-square e r r o r .  If w e  
assume t h a t  t h e  d i s t o r t i o n  depends on t h e  d i f f e r e n c e  between t h e  exac t  t r a n s -  
form c o e f f i c i e n t  (x i )  and i t s  corresponding r e p r e s e n t a t i v e  va lue  ( y i ) ,  t h e  
lower bound of t h e  ra te  d i s t o r t i o n  func t ion  i s  w e l l  known ( r e f s .  9 and 10).  
Fo r  input  d i s t r i b u t i o n  p(x)  and d i s t o r t i o n  

1 N 1 N 9 
D = - N d(xi - yi) = - N Ixi - yil 

i=i i= 1 
t h e  r a t e  d i s t o r t i o n  func t ion  i s  bounded as fol lows:  

If we assume t h a t  t h e  t ransform c o e f f i c i e n t s  (x i )  have t h e  same .d i s t r ibu -  
t i o n ,  d i f f e r i n g  only i n  s c a l e  o r  var iance ,  we can show t h a t  t h e  en t rop ie s  of  
t h e  input  d i s t r i b u t i o n s  H[p(x)] a r e  i d e n t i c a l  except f o r  a func t ion  of v a r i -  
ance. 
k (  ( y l )  i s  obviously zero mean and symmetrical about zero. 

Suppose t h a t  k (  Iy l )  i s  a p r o b a b i l i t y  d e n s i t y  having u n i t  var iance ;  
If 

pCa,x) = akClaxl) 

where c1 i s  a s c a l e  parameter,  then 

a k ( l a x l ) d x  = 
-03 

Therefore ,  p (a ,x)  i s  a l s o  a zero mean, symmetrical p r o b a b i l i t y  dens i ty .  The 
var iance  of  p(a ,x)  i s  a func t ion  of t h e  scale parameter:  

1 
2 

- - -  
a 

The l a s t  s t e p  fol lows from t h e  assumption t h a t  
entropy of t h e  d i s t r i b u t i o n  i s  

k ( l y ( ) h a s  u n i t  var iance .  The 
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m 

H[p(a,x)] = - 
m 

= -5 ak( 
-03 

The entropies of a family of input distributions differing in scale are identi- 
cal except for a function of the scale or variance. 

The lower bound on the rate distortion function is then 

For any fixed symmetrical input distribution and f o r  any fixed difference dis- 
tortion measure, 

where K is a constant determined by the input distribution and distortion 
measure. In certain cases, such as the Gaussian distribution with mean-square 
error or the two-sided exponential distribution with magnitude error, the rate- 
distortion function is equal to this lower bound (ref. 9, pp. 95 and 99). The 
parameters and performance of the optimum quantizers have been determined from 
the Gaussian, two-sided exponential, and gamma input distributions and for the 
magnitude and mean-square-error criteria (refs. 4, 6 ,  and 7). The resulting 
rate distortion performance curves are reasonably close to the theoretical 
rate distortion curves found above (ref. 7). The two-sided exponential and 
Gaussian densities are similar to experimental distributions of transform 
coefficient distributions. 

F o r  a given theoretical or empirical rate distortion curve, the optimum 
bit assignment is found after Huang and Schultheiss (ref. 5, p. 293) .  F o r  N 
variables, the rate distortion function is 

i o 
b. = R(Di) = l0g2K 
1 D1/q 

i 
where 
measure. For an average rate A, 

K is a constant depending on the input distribution and distortion 
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N 
bi = NA 

i = i  

The t o t a l  d i s t o r t i o n  i s  

1 N 1 N -b i  9 
D = - D .  = - (Koi2 ) 

i=1  
I N  i = 1  N 

To minimize d i s t o r t i o n  under t h e  average ra te  c o n s t r a i n t ,  

i = 1  

N 

Since t h i s  quan t i ty  i s  t h e  d i s t o r t i o n  f o r  t h e  i t h  v a r i a b l e ,  a l l  v a r i a b l e s  
have equal  d i s t o r t i o n  i n  t h e  optimum b i t  assignment: 

- 

Using t h e  sum of b , ,  
I 

q(Rn 2)K a i  2 bi = N 1  - log2 [ NB ‘1 = NA 
i = 1  9 i = 1  

N 

i = 1  
c m 2 a i  

-log2 1 [ q(RnNi)Kq] = A - - N 1 
9 

N 

i = 1  

Therefore ,  
1 b .  = 10g20i + A - - 

1 N 1 0 ~ 2 0 ~  

o r  
b .  = 1.66 log1002 + C 
1 i 

f o r  cons tan t  C. 
var iance ,  and no dependence on t h e  a c t u a l  d i s t r i b u t i o n  or d i s t o r t i o n  measure, 
f o r  a l l  combinations of a sca l ed  symmetrical input  d i s t r i b u t i o n  with a d i f f e r -  
ence d i s t o r t i o n  measure. Furthermore, s i n c e  a c t u a l  quan t i ze r  r a t e  d i s t o r t i o n  
performance curvzs have a s lope  s imilar  t o  t h e  s lope  of  t h e  theo re t i ca l -bound ,  
sometimes d i f f e r i n g  only by a cons tan t  ( r e f s .  4, 7, and 11), t h e  a c t u a l  quan- 
t i ze r s  use  a very similar b i t  assignment r u l e .  
var iance  a r e  not  t r ansmi t t ed  (bi = 0) when t h e  r e s u l t i n g  d i s t o r t i o n  i s  less 
than  t h e  equal d i s t o r t i o n  D def ined  above. 

The t h e o r e t i c a l  b i t  assignment has  t h e  same dependence on 

Note t h a t  v a r i a b l e s  of small 
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Davisson (ref. 3) indicated that objections have been raised to the use of 
the standard rate distortion function because the source densities are not 
Gaussian and because mean-square error is not appropriate. 
here eliminates these objections, at least in bit assignment, f o r  a wide range 
of source densities and distortion measures. 
derived directly from the correct-source density and distortion measure (refs. 
4, 6, and 7). 

The result found 

The optimum quantizers are 

SUBJECTIVE BIT ASSIGNMENTS 

Although it is generally accepted that rate distortion theory is not 
useful in image coding, Mannos and Sakrison (ref. 12) performed an experiment 
that significantly increases the usefulness of the theory. 
was as follows: 

Their procedure 

(1) A nonlinear weighting was performed on the picture samples. 
(2) A smoothed, isotropic power spectral density was estimated. 
(3) The spectral density and rate-distortion theory were used to define 

(4) The fast Fourier transform was taken of a full 512 by 512 picture. 
(5) Only the coefficients that exceeded the minimum distortion were trans- 

( 6 )  The inverse transform and nonlinear operation were applied. 
(7) The picture was subjectively evaluated. 

the equal maximum distortion in the spectral domain. 

mitted, with Gaussian noise added to give the equal minimum distortion. 

Although added Gaussian noise, which corresponds to an ideal quantizer, was 
used rather than an actual quantizer, the above steps conform t o  the bit assign- 
ment theory. The estimated power density and the actual transform coefficients 
were weighted using different functions and the results evaluated subjectively. 
Mannos and Sakrison's best curve of contrast sensitivity versus spatial fre- 
quency has a peak at 8 cycles/degree and decreases rapidly on either side of 
the peak, which agrees very well with direct measurements. It follows that, 
if the coefficient variances are weighted according to spatial frequency o r  
transform vector visibility, the bit assignment theory should produce good 
subjective results. 

For correlated picture elements, the coefficient power decreases as spa- 
tial frequency increases. Therefore, weighting according to frequency may be 
approximated with weighting according to power. Davisson (ref. 3) considered 
the coefficient distortion to be 

d. = min(o 2 Boi 2x ) 
1 i' 

The bit assignment is 

where C adjusts the total number of bits, as usual. The best results for a 
256 x 256 Fourier transform picture at 0.5 bits/sample were obtained for 
x = 1/3: 
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I 

b. = 1.11 log1oo$ + C '  , for Calx > IJ 
1 i 

The bit representation for lower powers o r  higher spatial frequencies is 
increased for a fixed total of bits, while the bit representation for high 
powers is decreased. At viewing distances three times the picture height, the 
picture subtends 19", and the picture elements occur 256/19 or  13.5/deg. Thus 
the spatial components had frequencies from 0.053 for the full picture to fi 
(13.5) = 19.0 for a checkerboard of the picture elements. These frequencies 
lie largely in the region where contrast sensitivity is increasing with spatial 
frequency, so Davisson's bit reassignment agrees with the work of Mannos and 
Sakri son. 

Landau and Slepian (ref. 1) subjectively quantized 4 x 4 Hadamard trans- 
form vectors f o r  256 x 256 pictures. 
picture height, the spatial frequencies of the 4 x 4 Hadamard blocks vary from 
256/19 (1/4)fi = 4.77 to 256/19 fi = 19.0 cycles/deg. 
bit assignments are shown in figure 1, with several theoretical results based 
on their covariance values. All bit assignments total 32 bits. The Shannon 
theory bit assignment and the modified assignment of  Kurtenbach and Wintz (ref. 
13) are similar, but both are quite different from the empirical assignment. 
Table I gives estimated spatial frequencies f o r  the Hadamard vectors and shows 
the application of Mannos and Sakrison's frequency weighting to the vector 
powers. 
empirical bit assi~ment. 
and Slepian's assignment gives a slope of 3.65, with 
The theoretical and empirical bit assignments differ widely. 

At a viewing distance three times the 

Landau and Slepian's 

This bit reassignment is slightly closer to Landau and Slepian's 
A linear regression on bi versus 0: for Landau 

C = 7.10 for 32 bits. 

0 LANDAU AND SLEPIAN'S BIT ASSIGNMENT 
0 1.66 10gloUz + 4.38 (SHANNON) 
0 FREOUENCY WEIGHTED (MANNOS 

A 2.0 10gloU2 + 4 . 8 5  (WINTZ AND 
AND SAKRISON) 

KURTENEACH) 

ON LANDAU AND SLEPIAN 
3.65 IOgloUZ +7.10 - L I N E A R  REGRESSION 

I , , , ,  

H o o H ~ ~  H 0 2 ~ 2 0 ~ 0 3 ~ 3 0 ~ 1 1  H ~ 2  H21 H13H34 H22H23H32H33 
VECTOR 

Figure 1.- Comparison of theoretical 
and empirical bit assignments. 

Knauer (ref, 14) implemented 
real-time video three-dimensional 
Hadamard transform compression. 
The video frames are 512 x 512 
samples; 4 x 4 x 4 subpictures 
with a time dimension are used. 
Experimentation with a program- 
mable quantizer indicated that 
Landau and Slepian's compression 
scheme can be improved very lit- 
tle. In the 1.1-bit/sample bit 
assignment of Knauer's table 11, 
the vectors representing no tem- 
poral change have the same bit 
assignments as in Landau and 
Slepian, except that the H00 
vector has seven bits. 
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~ THEORETICAL 
SUBJECTIVE _ _ _ _ _  

IO Habibi and Wintz (ref. 2) encoded 
four pictures, of 256 x 256 samples, 
using Karhunen-Loeve, Fourier, and 
Hadamard transforms in 16 x 16 subpic- 

1.0, and 0.5 bits/sample and a bit 
assignment rule with a slope of 2.0. 
For the Karhunen-Loeve transform, 
they found that subjective quality 
was "improved slightly by assigning 
more bits to the samples with larger 

bits to the samples with the smaller 

fied bit allocation also resulted in 
Figure 2.- Theoretical and subjec- a slightly smaller mean-square error." 

tive bit assignments from Habibi Their theoretical and subjective bit 
and Wintz--(ref. 2) . assignments for 2.0 and 0.5 bits/sam- 

the reassignment for 1.0 bits is similar. Since the theoretical slope is 2.0, 
the slope of 02 
assignments (takle 11). 
jective slope. Taking each group of vectors as a data point, linear regres- 
sion shows that the subjective slopes are 2.55, 2.59, and 2.68 for the 2, 1, 
and 0.5 bit/sample bit assignments. This change of slope is similar to, but 
less than, that of Landau and Slepian. Habibi and Wintz report that no reas- 
signments that were consistently better for the Fourier and Hadamard trans- 
forms were found. The frequency range for 16 x 16 Hadamard blocks of 256 x 

256 pictures, viewed at a distance three times the height, varies from 1.19 to 
19.0 cycles/deg. Assuming that the Karhunen-Loeve vectors have a similar fre- 
quency range, the bit assignment f o r  higher power vectors would be reduced 
from the theoretical, as in Davisson's experiment discussed previously. The 
subjective bit reassignment is contrary to the indication of subjective fre- 
quency weighting. 

9 

8 
a 
0 7  I- tures. They selected rates of 2.0, 
E 6  
L 5  
a 4  
m 

> 
0) 

$ 3  
2.0BlTS per SAMPLE 2 

I variances and proportionally fewer 
0 

VECTOR N U M B E R  variances," and found that "the modi- 

ple are given here in figure 2, and 

versus vector number is determined by the theoretical bit 
The subjective bit assignments then determine the sub- 

It is apparent that subjective bit assignments differ significantly from 
theoretical bit assignments. The work of Mannos and Sakrison (ref. 12) and 
Davisson (ref. 3 )  indicates that, for transforms of complete 256 x 256 pic- 
tures, subjective frequency weighting accounts for the discrepancy. The work 
of Landau and Slepian (ref. 1) , Knauer (ref. 14), and Habibi and Wintz 
(ref. 12) , for small subpictures, shows that larger vectors should be assigned 
relatively more bits. For  small blocks, the reassignment is in excess of, or 
in contradiction to, the effect of subjective frequency weighting. 

INTUITIVE EXAMINATION OF BIT ASSIGNMENT PROBLEM 

The reason that subjective bit assignments differ from theoretical bit 
assignments becomes apparent when we consider a subjective compression design 
procedure for small block size. The 4 x 4 Hadamard vectors are shown in fre- 
quency order in figure 3 .  If we start with a transformed picture of highest 
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Figure 3 . -  Sequency-ordered 4 x 4 
Hadamard b a s i s  vec to r s .  

q u a l i t y ,  a l l  t ransform c o e f f i c i e n t s  
have c l o s e l y  spaced r e p r e s e n t a t i v e  
va lues  covering t h e  f u l l  p o s s i b l e  
range. In  t h e  f irst  at tempt  t o  reduce 
t h e  r a t e ,  some vec to r s  a r e  represented  
by a zero va lue  t o  determine which can 
be  e l imina ted  wi th  l e a s t  effect .  
IJsually, many high-sequency vec to r s  
have such small var iance  t h a t  t h i s  
causes l i t t l e  degradat ion.  Next, t h e  
ranges of  t h e  remaining vec to r s  a r e  
reduced u n t i l  edge b l u r s  appear. 
Las t ly ,  r e p r e s e n t a t i v e  values  are 
thinned out  of  t h e  r e t a i n e d  vec to r  
ranges u n t i l  g ranular  n o i s e  due t o  t h e  
coarse  quan t i za t ion  becomes objec t ion-  
ab le .  Each f i n a l  vec to r  representa-  
t i o n  has s u f f i c i e n t  range t o  adequately 
reproduce edges and has  enough i n t e r -  
mediate l e v e l s  t o  minimize quant iz ing  

noise .  
c o r r e l a t i o n  with mean-square e r r o r .  

These tests of q u a l i t y  a r e  extremely s u b j e c t i v e ,  bu t  t hey  have some - 

In  a p i c t u r e  of h igh  c o n t r a s t ,  some of  t h e  subp ic tu re s  w i l l  be very  l i g h t  
o r  very  dark,  s o  t h a t  t h e  block average t ransform vec to r  u s u a l l y  has t h e  f u l l  
p o s s i b l e  range ( r e f s .  1 and 14) .  Suppose t h e r e  are h igh  c o n t r a s t  edges i n  t h e  
p i c t u r e .  
be  reproduced with t h e  f u l l  o r i g i n a l  c o n t r a s t .  
w i l l  i n t e r s e c t  subp ic tu re s ,  causing t ransform vec to r  c o e f f i c i e n t s  of extreme 
value.  These va lues  must be c o r r e c t l y  represented  o r  a s i n g l e  edge w i l l  have 
varying c o n t r a s t  and sharpness .  (Edge ghosts  a l s o  a f f e c t  t h e  vec to r  e l imina-  
t i o n  dec i s ion ,  a s  descr ibed by Knauer ( r e f .  15) . )  Adequately r ep resen t ing  t h e  
edges r e q u i r e s  t h a t  some of  t h e  vec to r  c o e f f i c i e n t s  have wider r e p r e s e n t a t i v e  
value ranges and more b i t s  than t y p i c a l  subp ic tu re s  would need. 

Some p o r t i o n s  of t h e s e  edges w i l l  co inc ide  wi th  block edges, and w i l l  
Other po r t ions  of  t h e  same edge 

The above argument can be  q u a n t i f i e d  i f  some assumptions a r e  made. For an 
N x N subpic ture ,  t h e  Hadamard t ransform matr ix ,  H, i s  an 
21 elements.  
sample values .  The H mat r ix  i s  m u l t i p l i e d  by 1 / N ,  s o  t h a t  t o t a l  power i s  
equal i n  t h e  sample and t ransform domains. 

xTx, t h e  t ransform c o r r e l a t i o n  mat r ix  i s  

N 2  x N2 matr ix  of  
The vec to r  c o e f f i c i e n t  va lue  i s  found by adding and s u b t r a c t i n g  

If t h e  sample c o r r e l a t i o n  mat r ix  i s  - 

- - 
T 1 T 1  

N N y y = - - H  x X - H  
- 

T 
The powers o r  var iances  of  t h e  t ransform vec to r s  are on t h e  diagonal  of  y y. 
We assume u n i t  var iance  samples produced by a f i r s t - o r d e r  Markov process  wi th  
sample t o  sample c o r r e l a t i o n  of 0.95, v e r t i c a l l y  and h o r i z o n t a l l y  ( r e f s .  2 and 
3 ) .  The equat ion above de f ines  t h e  t ransform c o e f f i c i e n t  var iances ,  which 
determine t h e  t h e o r e t i c a l  b i t  assignment and g ive  an e s t ima te  of  t h e  c o e f f i c i -  
en t  range. 
t i v e  va lue  of about 30 ( r e f .  4) .  p o i n t  f o r  Hadamard 

Quant izers  f o r  t h e  Gaussian d i s t r i b u t i o n  have a maximum rep resen ta -  
Average va lues  of  t h e  30 
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vec to r s  and groups of  Hadamard vec to r s  of d i f f e r e n t  block s i z e  are given i n  
t a b l e  111. 

We next  determine t h e  l a r g e s t  vec to r  c o e f f i c i e n t s  produced by sharp ,  high- 

Consider a v e r t i c a l  edge d iv id ing  a l i g h t  
c o n t r a s t  edges. 
t r i b u t i o n s ,  t h e  sample range is  *a. (+a) reg ion  on t h e  l e f t  from a dark (-a) reg ion  on t h e  r i g h t .  The va lue  of 
H 0 0  f o r  a 4 x 4 subpic ture  ( f ig .  3) v a r i e s  from + 4 6  f o r  a l l  l i g h t  samples t o  
- 4 6  f o r  a l l  dark samples, s i n c e  16(N2) samples are added with t h e  same s i g n  
and d iv ided  by a s c a l e  f a c t o r  of  (1/4) ,  (1/N). 
vec to r  l i n e s  up wi th  t h e  edge, t h e  H 0 1  c o e f f i c i e n t  i s  4 a ;  t h e  va lue  should 
be -4a f o r  an edge t r a n s i t i o n  of  oppos i te  s ign.  
one of  t h e  t r a n s i t i o n s  of  
extreme edge induced value.  The same maximum values  occur f o r  h o r i z o n t a l  
edges and t h e  corresponding vec to r s  with ho r i zon ta l  t r a n s i t i o n s ,  and similar 
extreme va lues  can be found f o r  diagonal  and skew edges and Hadamard vec to r s  
with both ho r i zon ta l  and v e r t i c a l  t r a n s i t i o n s .  
f i c i e n t  va lues  f o r  var ious  block s izes  a r e  shown i n  t a b l e  111. 
t u r e  exac t ly  matched t h e  Hadamard vec to r  

c o e f f i c i e n t s .  

If t h e  u n i t  va r i ance  samples a r e  assumed t o  have uniform d i s -  

When t h e  t r a n s i t i o n  of  t h e  HO1 

When t h e  edge co inc ides  with 
H 0 3  has  t h e  same H 0 2 ,  t h e  c o e f f i c i e n t  i s  - Z n ,  and 

The maximum-edge-induced coef- 
If  t h e  subpic- 

a t t e r n s ,  and had maximum l ight -dark  
range, t h e  c o e f f i c i e n t  va lue  would be N P 3, t h e  maximum value  f o r  a l l  

For  t h e  smal le r  block s izes  shown i n  t h e  t a b l e ,  t h e  maximum-edge-induced 
c o e f f i c i e n t s  of vec to r s  with a l l  v e r t i c a l  o r  a l l  ho r i zon ta l  t r a n s i t i o n s  (Hox 
o r  Hxo) are equal t o  9 t o  130, while  t h e  maximum-edge-induced c o e f f i c i e n t s  of 
vec to r s  with both ho r i zon ta l  and v e r t i c a l  t r a n s i t i o n s  are equal t o  3 t o  50. 
The ex i s t ence  of edges r e q u i r e s  a l a r g e r  ex tens ion  of range f o r  vec to r s  with 
only v e r t i c a l  o r  ho r i zon ta l  t r a n s i t i o n s  than  f o r  vec to r s  with both.  For  small 
block s i z e s ,  a l l  samples a r e  h igh ly  c o r r e l a t e d  and t h e  H 0 0  v e c t o r  has t h e  
sample d i s t r i b u t i o n ,  assumed t o  be  uniform and f u l l  range. 
i s  approximately (v '??N)~/~ = N 2  and 30 = 3N. 

Then t h e  var iance  

The H 0 0  vec to r  should have f u l l  range, and i f  maximum-edge-induced coef- 
f i c i e n t s  occur,  t h e  H01 and H10 should have f u l l  range, t h e  H 0 2 ,  H 0 3 ,  H 2 0 ,  
and H 3 0  should have h a l f  range, e t c .  As shown i n  t a b l e  IVY t h e  l a r g e s t  repre-  
s e n t a t i v e  values  i n  t h r e e  s u b j e c t i v e  4 x 4 Hadamard systems a r e  20 t o  50 per -  
cen t  of t h e  maximum edge c o e f f i c i e n t s .  The edge d i f f e rences  are usua l ly  only 
from l i g h t  t o  dark r a t h e r  than  from white  t o  black.  
c o e f f i c i e n t  d i s t r i b u t i o n s  a r e  u s u a l l y  exponent ia l ,  wi th  t h e  number of extreme 
va lues  depending on t h e  frequency and sharpness  of  edges. The observed high- 
va lue  c o e f f i c i e n t s  due t o  edges, though l e s s  than  t h e  maximum poss ib l e ,  s t i l l  
r e q u i r e  r e p r e s e n t a t i v e  va lues  extending t o  t h e  t h e o r e t i c a l  5 o r  60 po in t .  

Experimental Hadamard 

I n  t h e  design of a r ea l - t ime  hardware Hadamard t ransform video compressor, 
an adapt ive  system was used (ref.  8) .  Depending on t h e  vec to r  c o e f f i c i e n t  mag- 
n i tudes ,  4 x 4 blocks were quant ized d i f f e r e n t l y .  The most f r equen t ly  used 
(61 percent )  b i t  assignment and quan t i za t ion  was based on a t h e o r e t i c a l  b i t  
assignment f o r  a Markov c o r r e l a t i o n  model wi th  0.95 c o r r e l a t i o n  between ho r i -  
z o n t a l l y  ad jacent  elements. The second method was used when v e c t o r  c o e f f i c i -  
e n t s  exceeded t h e  ranges i n  t h e  f irst  method, and i s  q u i t e  similar t o  Landau 
and S lep ian ' s  design. The t h i r d  method i s  used when vec to r  magnitudes exceed 
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t h e  range of t h e  second method, and provides  s u p e r i o r  reproduct ion  of sharp ,  
h igh-cont ras t  edges. 
subp ic tu re s ,  determined Landau and S lep ian ' s  design. 

I t  i s  apparent  t h a t  edges,  r a t h e r  than t h e  most t y p i c a l  

As block s i ze  inc reases  from 2 x 2 t o  8 x 8, t h e  maximum-edge-induced 
c o e f f i c i e n t s  become smaller compared t o  t h e  t h e o r e t i c a l  s tandard  devia t ion .  
For  f u l l  p i c t u r e  t ransforms,  l a rge - sca l e  edges s i m i l a r l y  can cause extreme 
c o e f f i c i e n t  va lues ,  bu t  s e v e r a l  f a c t o r s  make t h i s  p o s s i b i l i t y  r e l a t i v e l y  unim- 
po r t an t .  For  a f u l l  512 x 512 p i c t u r e ,  t h e r e  i s  only one HO1 vector .  If t h e  
p i c t u r e  i s  broken i n t o  4 x 4 subp ic tu re s ,  t h e r e  a r e  16,384. The observed fre- 
quency of  l a r g e  H 0 1  c o e f f i c i e n t s  f o r  f u l l - p i c t u r e  t ransforms w i l l  be one i n  
many p i c t u r e s ;  f o r  4 x 4 t ransforms t h e  observed frequency w i l l  be many i n  one 
p i c t u r e .  Most compression systems a r e  t e s t e d  on only a few p i c t u r e s ,  and pos- 
s i b l y  f u l l - p i c t u r e  systems would poor ly  reproduce a p i c t u r e  h a l f  b lack  and 
h a l f  white  ( i . e . ,  a p i c t u r e  equal  t o  an extreme H O 1  vec to r ) .  A second reason 
t h a t  edge effects a r e  unimportant i n  f u l l - p i c t u r e  t ransforms i s  t h a t ,  s i n c e  
each c o e f f i c i e n t  desc r ibes  t h e  f u l l  p i c t u r e ,  t h e r e  are no n o t i c e a b l e  d i f f e r -  
ences i n  edge r e n d i t i o n  between reg ions .  A b l u r r e d  edge i s  uniformly b lu r red ,  
and such b l u r s  a r e  less n o t i c e a b l e  because comparison i s  d i f f i c u l t .  
a l l  f u l l - p i c t u r e  v e c t o r  c o e f f i c i e n t s  are determined us ing  a l l  p i c t u r e  elements 
( 2 1 8 ) ,  which tends t o  average l o c a l  f e a t u r e s  o r  edges and make t h e  c o e f f i c i e n t  
d i s t r i b u t i o n  approach t h e  Gaussian, which has  r e l a t i v e l y  fewer extreme va lues  
than t h e  exponent ia l  d i s t r i b u t i o n  observed f o r  small subpic tures .  

Thi rd ly ,  

The s u b j e c t i v e  b i t  assignment r u l e  f o r  small  block s i ze  seems t o  be:  

( 1 )  Quantize t h e  block average c o e f f i c i e n t  uniformly over t h e  f u l l  pos- 
s i b l e  range, with 6 t o  8 b i t s .  

( 2 )  Determine t h e  t h e o r e t i c a l  b i t  assignment f o r  t h e  requi red  b i t  r a t e ,  
using measured var iances  o r  t h e  t h e o r e t i c a l  var iances  f o r  t y p i c a l  p i c t u r e s .  

(3) Add one b i t  (and extend t h e  r e p r e s e n t a t i v e  va lue  range) f o r  vec to r s  
with a l l  v e r t i c a l  o r  a l l  h o r i z o n t a l  t r a n s i t i o n s .  

(4) Use zero b i t s  i n s t e a d  of t h e  t h e o r e t i c a l  number f o r  t h e  h ighes t  
sequency vec to r s  u n t i l  t h e  number b i t s  i s  reduced t o  t h e  r equ i r ed  r a t e .  

This  r u l e  reproduces Landau and S lep ian ' s  b i t  assignment i n  f i g u r e  1, while  
t h e  c l o s e s t  b i t  assignment based on c o e f f i c i e n t  var iances  i s  a poor approxima- 
t i o n  and has no i n t u i t i v e  j u s t i f i c a t i o n .  

Ames Research Center 
Nat ional  Aeronautics and Space Adminis t ra t ion 

Moffet t  F i e ld ,  Ca l i f . ,  94035,October 1 9 ,  1976  
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14  
15 
16 
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TABLE I.  - FREQUENCY WEIGHTING OF LANDAIJ AND SLEPIAN'S VARIANCES 

. . . . . . . 

Designation 
. . . .  

Hob-  - - - -  
Ho 1 
H10 
Ho 2 
H2  0 

H 1 1  
H 1 2  
H2 1 
H i  3 

H2 2 

H 3  3 

HO 3 
H3 0 

H3 1 

H2 3 
H32 

_ _ _ _ _ _ _ _ . _ .  

rariance? 
0 2  

1-.00- - - - 

.098 

.087 

.035 

.038 

.os1 

.048 

.034 

.024 

.024 

.020 

.022 

.019 

.015 

.016 

.014 
. - - - . . . . . 

Frequency 
_ _  

4.. 77 
7.55 
7.55 

10.67 
10.67 
13.92 
13.92 
9.55 

12.17 
12.17 
15.09 
15.09 
14.31 
16.88 
16.88 
19.09 

_ _ _  

A(fr)b 

0.88 
.98 
.98 
.93 
.93 
.79 
.79 
.96 
.87 
.87 
.74 
.74 
.77 
.65 
.65 
.54 

aLandau and S lep ian ,  t a b l e  I ( r e f .  1 ) .  
bMannos and Sakrison, equat ion (23) ( r e f .  12).  
CLandau and S lep ian ,  t ab le  I11 ( r e f .  1 ) .  

1.66 logloo2A2+4.81 

4.50 
2.98 
2.90 
2.15 
2.22 
2.20 
2.15 
2.18 
1.78 
1.78 
1.43 
1.49 
1.43 
1.02 
1.07 

.71 

B i t s C  

T 
4 
4 
3 
3 
3 
3 
2 
2 
2 
n 
0 
0 
0 
0 
0 
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TABLE 11. - HABIBI-WINTZ THEORETICAL ANT) EMPIRICAL BIT ASSIGNMENTS~ 

- - - - - - 
8 
7 
6 
5 
4 
3 
2 
1 
0 
0 

I_ . - - . - - - - 

1 
. . -- - - . - __ - - - - 

8.32 
7.04 
5.77 
4.49 
3.22 
3.22 
1.94 
1.94 
.67 

-.61 _ _  - - - - - - - - - - - - __  

2 bits/sample; b; 

1-2 
3-6 
7-14 
15-25 
26-35 
36-46 
47-71 
72-256 - - .. 

1-3 
4-9 
10-21 
22-47 
47-88 
89-90 

116-139 

204-256 

91-115 

140-203 

5 
4 
3 
2 
2 
1 
1 
0 

. . . . . . . . . . . . . 

6 
5 
4 
3 
2 
1 
0 
0 

1 bit/sample; bia = 2.59(bith/2.0)-0.48 

5.98 
4.64 
3.29 
1.95 
1.95 
.61 
.61 

-.73 

! 

. . .....-.-_-_..___._________ 

1-2 
3-6 
7-15 
16-38 
39-56 

67-73 
74-122 
123-256 

57-66 
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TABLE I11 .- 30 AND MAXIMUM-EDGE-INDIJCED VALIJES FOR HADAMARD 
TRANSFORM COEFFICIENTS 

Edge 

5.87 3.46 

.79 3.46 

30 Maximum 

- - 
- - 
.52 .87 
- - 

. . . . . . - - - . - . - . - 

Vector 
Edge 

11.41 6.93 

1.86 6.93 

.92 3.46 

3u hilaximum 

- - 
.95 1.73 

.64 .87 
- - . - - - - - . - - - - - - - 

. . . . . . . . . . . . ~ . . .  

Ho 0 

Ho 1 r H 1 0  

H 0 2  r H 0 3  r H 2 0 r H 3 0  

HO 4 -H 0 7 r H4 0 -H7 0 

H11 
Hl 2 ,H1 3 r H2 1, H3 1 
- - - . - - . . . . . . . 

Landau 6 
Slep ian  
( r e f .  1) 

I 

Knauer~ -(re-f.’ -143- - Jones  ( r e f .  
(Vectors wi th  no (Mode 3 f o r  
t i m e  component) extreme edges) 

21.64 13.85 

4.82 13.85 

2.23 6.93 

1.04 3.46 

2.37 3.46 

1.38 1.73 
- . . - - . - - . - - - - - 

0.94 

.24 

.093 

.069 

.069 

0 

N x N  

0.99 0.98 

.31,0.19 .48,0.23 

.093,0.074 .23,0.11 

.090 .I1 

.069 0 

0 0 

Edge 
Maxi mum 

TABLE 1 V . -  FRACTION OF RANGE REPRESENTED I N  SUBJECTIVE 4 x 4 HADAMARD DESIGNS 

Vectors I 
Edge maximum 
value  d iv ided  
by f u l l  range 
(N &). 

. . . . . _ _ _ _ _ _  

1.0 

1.0 

0.5 
0.25 

0.125 

0.125-0.063 
- - . - . . - - - 
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